ERRATA CORRIGE (January, 26th 2016)

Spectral Theory and Quantum Mechanics – With an Introduction to the Algebraic Formulation

1st English edition, by V. Moretti (translated by S. Chiossi), Springer-Verlag 2013

A list of mathematical (and of other kinds) misprints and corresponding corrections appears below. I usually update the list as soon as anyone points out errors to me.

Please make me aware of any error/typo you are able to spot, sending an email message to: *valter.moretti@unitn.it*.

I'll thank you by adding your name to the ackonowledgments in the preface of the next edition of the book (if any) as well as to the list below.

As a general overall comment for mathematicians, adopting the standard notation of physicists, throughout the book it is assumed that

$$\hbar := \frac{h}{2\pi} \, .$$

Page and line/position	Errata	Corrige
11, in Remark 1.4 (2)	of (infnitely many) closed	of (arbitrarily many) closed
11 , in Remark 1.4 (3) 4th line	of \mathbb{R} or \mathbb{C} .	of R .
11 , in Eq.(1.2)	$B_{\delta} := \{ x \in \mathbb{K}^n \mid \mathbf{x} < \delta \}$	$B_{\delta} := \{ x \in \mathbb{K}^n \mid x - x_0 < \delta \}.$
13 , 1st line	any neighbourhood of A	any open neighbourhood of A
13, in Def 1.16 (a)	if $f^{-1}(A') \subset \mathcal{T}$	if $f^{-1}(A') \in \mathfrak{T}$
13,	$\inf_{k\in\mathbb{N}}\sup_{n\geq k}s_k$	$ \inf_{k \in \mathbb{N}} \sup_{n \ge k} s_n $
	$(=\lim_{k\to\infty}\sup_{n\geq k}s_k)$	$(=\lim_{k\to\infty}\sup_{n\ge k}s_n)$
13,	$ \inf_{k \in \mathbb{N}} \inf_{n \ge k} s_k $	$\inf_{k\in\mathbb{N}}\inf_{n\geq k}s_n$
	$(=\lim_{k\to\infty}\inf_{n\geq k}s_k)$	$(=\lim_{k\to\infty}\inf_{n\geq k}s_n)$
15 , btwn Prop.1.23 and Thm1.24	$supp(f) := \overline{\{x \in X f(x) = 0\}}$	$supp(f) := \overline{\{x \in X f(x) \neq 0\}}$
15, Prop.1.23	to the compact Hausdorff space	to the Hausdorff space
15, Def.1.26	disjoint open sets.	disjoint open sets different
		from \emptyset and X.
18 , (f), (g) Prop.1.36 (4 times)	$\sup_{n\in\mathbb{N}} f(x)$	$\sup_{n\in\mathbb{N}}f_n(x)$
18 , 2 lines above Prop.1.36	$=:+\infty$	$:= +\infty$
21 , in Proof of Prop1.45	$0 = \mu(K) \le \mu(A_1) + \dots$	$0 \le \mu(K) \le \mu(A_1) + \dots$
21 , in Def.1.46	$\mu(E) = \emptyset$	$\mu(E) = 0$
22 , Remark 1.47 (3) lines 3,4	where $f(x)$ does not coincide	where the limit does not exist,
	might not exist),	
23 , top	$\int_{X} s_{\mathbf{n}}(x) d\mu(x)$	$\int_{X} s(x) d\mu(x)$
28, penultimate line in Prop.1.65	$\mu_n(F\setminus G)$	$\mu_n(G \setminus F)$
28 , last line in Prop.1.65	of open sets.	of resp. closed and open sets.
30 , penultimate line	$\mu_{pa}(S) := \sum_{x \in P \cap S} \mu(P_{\mu} \cap S)$	$\mu_{pa}(S) := \mu(P_{\mu} \cap S)$
31 , 3rd line in 1.4.7 from the top	$F \in \sigma(Y)$	$F \in \Sigma(Y)$
42, main formula in Prop. 2.17	$ f _{\infty} := \sup_{x \in \mathbf{X}} f(x) $	$ f _{\infty} := \sup_{x \in K} f(x) $
55, immediately above Thm 2.40	that lingear operators are	that <i>bounded</i> operators are

63, 6 lines above Corollary 2.55	functional on X' for which	functional on X^\prime so that
69 , 3rd line, proof of Thm 2.76	just a <mark>real</mark> number	just a complex number
70, D3 in Definition 2.78	$d(x,z) \le d(x,y) + d(y, \boldsymbol{x}).$	$d(x,z) \le d(x,y) + d(y,z).$
72 , (b) 11 lines blw Def. 2.86	$\cap_{n=1,2,\dots} p_n^{-1}(0) = 0.$	$\cap_{n=1,2,\dots} p_n^{-1}(0) = \{0\}.$
130 , Sect.3.4, 4th line from top	2.96, and the subsequent	2.96, we provide
171 , above Eq.(4.4)	is the maximum $\Lambda \in$	\dots is $\Lambda \in \dots$
194 , 14th line from the top	This is still true even	With a clarification, this is still
	true if A is not self-adjoint	true even if A is not self-adjoint
194 , 2nd line in Thm 4.39	m_{λ} is the dimension of the	m_{λ} is the algebraic multiplicity
	λ -eigenspace	of the eigenvalue λ
211 , (ii) in Def 5.4 and below	Tx_n and $y = Tx$	Ax_n and $y = Ax$
242 , line below Eq. (6.3)	quantum (see below) .	quantum (see below) and $\hbar := \frac{h}{2\pi}$.
248 , 4 lines above Sect. 6.5	allowed only physical states	allowed only in physical states
260 , (a) in Definition 7.8	$) \land (a \lor b)) \lor (a \land b)$	$) \land (a \lor c) \dots) \lor (a \land c) \dots$
280 , (4) in Remark 7.26	$I + \sum_{i=2}^{3} n_i \sigma_i$	$I + \sum_{i=1}^{3} n_i \sigma_i$
280 , Eq. (7.16)	$I + \sum_{i=2}^{3} u_i \sigma_i$	$I + \sum_{i=1}^{3} u_i \sigma_i$
311 , 2 lines above Thm.8.4	if $T: D(\mathbf{H}) \to H$	if $T: D(T) \to H$
320 , (a) in Prop.8.19	$\sigma(a) = \sigma(a)^{-1} :=$	$\sigma(a^{-1}) = \sigma(a)^{-1} :=$
323 , 3rd line above (8.10)	Since $\phi_a(p) = p(a)$ is self-adjoint	Since a is self-adjoint, $\phi_a(p) = p(a)$
	and hence normal, by virtue of	is normal. By virtue of
326 , Proof of (b) Thm 8.22	The claim is immediatelyspace	See Prop. 2.3.1 in [BrRo02]I
332 , 2nd line from the top	$\chi_z(f) := \sum_{n \in \mathbf{n}\mathbb{Z}} f(n) z^n$	$\chi_z(f) := \sum_{n \in \mathbb{Z}} f(n) z^n$
394 , item (i) in Thm9.10	$\boldsymbol{\lambda} \in \sigma_p(T)$	$x \in \sigma_p(T)$
394 , item (ii) in Thm9.10	$\lambda \in \overline{\sigma_c(T)}$	$x \in \sigma_c(T)$
460-461, various equations	$ m \leq 2l + 1$ (7 occurrences)	$ m \leq l \text{ (in all occurrences)}$
501 , item (b) in Thm11.24	$U(\mathbf{t})V(\mathbf{u}) = V(\mathbf{u})U(\mathbf{t})e^{i\mathbf{t}\cdot\mathbf{u}}$	$U(\mathbf{t})V(\mathbf{u}) = V(\mathbf{u})U(\mathbf{t})e^{i\mathbf{t}\cdot\mathbf{u}} \ ,$
2nd line	(missed text)	$U(\mathbf{t})^* = U(-\mathbf{t}), V(\mathbf{u})^* = V(-\mathbf{u})$

514 , text under Eq. (11.59)	is a faithful (one-to-one) and irreducible	is an irreducible
514 , Text of Prop. 11.32	$\dots(11.60)$ holds (missed text), has	(11.60) holds and $H(1, 0, 0) = eI$ ha
514 , Text of Prop. 11.33	satisfying (11.60) (missed text)	satisfying (11.60) and $H(1, 0, 0) = eI$
521 , last line	will deal with the first kind,	will deal with the second kind,
	and tackle the static type	and tackle the dynamical type
535 , text in Eq. (12.13)	for every pure state	for every state
550 , 4th line in Def12.26	\dots injective homomorphism $U(1)\dots$	injective map $U(1)$
552 , footnote 6	if it is not (missed text) of the form	if it is <i>not</i> a convex combination
		of states of the form
556 , 3rd line from the top	$ =- b \psi_1(\psi_1 _{})+ b \psi_2(\psi_2 _{})$.	$\dots = - b \phi_1(\phi_1) + b \phi_2(\phi_2),$
556 , 4th line from the top	(missed text)This is the spectral	for a pair of orthonormal vectors
		ϕ_1, ϕ_2 in the span of ψ_1 and ψ_2 .
		This is the spectral
556 , 5th line from the top	$ b m{\psi}_1(m{\psi}_1 \) + b m{\psi}_2(m{\psi}_2 \) = b I,$	$ b \phi_1(\phi_1) + b \phi_2(\phi_2) = b I.$
556, 4th line from bttm	Set $\rho_1 := \dots$ for Definition 12.31.	The group product continuity and
		$tr(\gamma_0(\rho)\gamma_g(\rho)) = tr((\rho)\gamma_{g_0^{-1}g}(\rho))$
		yield continuity as in Def 12.31
		for $ \rho_1 = \rho_2 $. The result extends to
		$ \rho_1 \neq \rho_2 $ if exploiting Cauchy-Schw
		inequality for the Hilbert-Schmidt
		scalar product:
		$tr(\rho_1(\gamma_g(\rho_2) - \gamma_{g_0}(\rho_2))).$
672 , Prop . 14.4, 2nd line	if and only if the Gelfand ideal is trivial	if the Gelfand ideal is trivial

For their precious help in correcting the first English edition of my book, up to now, I'm grateful to:

Alejandro Ascárate, Nicolò Drago, Alan Garbarz, Bruno Hideki F. Kimura, Sonia Mazzucchi, Simone Murro, Marco Oppio, Alessandro Perotti, Nicola Pinamonti